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The copper-mediated activation of dioxygen is a subject of
considerable current interest. Copper monooxygenases include
Tyr (o-phenol hydroxylation)1,2aandp-MMO (CH4 f CH3OH),1,2b

as well as DâM and PHM;1,2c,dthe latter effect aliphatic C-H bond
substrate hydroxylations. In Tyr, a binuclear peroxodicopper(II) or
bis-µ-oxo-dicopper(III) species is implicated in substrate oxyge-
nation.2e For DâM and PHM, a CuII-(-OOH) (hydroperoxide) or
CuII-(O2

-) (superoxide) active species have been extensively
discussed.2c,d,f-h CuI/O2/substrate reactions are also important in
synthetic methodologies and other applications.2i,3

Biomimetic studies have proved to be a powerful means to
develop the fundamental chemistry of CuI/O2 interactions, determine
the nature of Cun-O2 (n ) 1-3) species, and elucidate mechanisms
of substrate reactivity.3 As CuI/O2-derived entities, Cun-OOH species
are less well studied than others, especially as concerns substrate
reactivity.4 Here, we report the chemistry of a new CuII

2-OOH
complex that is able to effect the hydroxylation of exogenous nitrile
substrates, releasing cyanide. This appears to be the first example
of such a reaction induced by a Cun-O2-derived species, which is
of biological interest since DâM also effects a benzylcyanide to
benzaldehyde plus cyanide conversion.5,6

The copper(I) complex [CuI2(PD′OH)(MeCN)2]2+ (1) (Figure 1)
is synthesized by reacting 2 equiv of [CuI(MeCN)4]+ with the
binucleating PD′OH ligand.7,8 X-ray analysis of a PPh3 deriva-
tive, [CuI

2(PD′OH)(PPh3)2](ClO4)2 (Figure 1),8 shows each cop-
per(I) ion has a distorted tetrahedral geometry, but with weak
CuI-Nalkylamino interactions (Cu-N ) 2.27 or 2.31 Å). As seen
before,9a-c the phenol oxygen remains protonated and not coordi-
nated (Cu‚‚‚O > 3.0 Å), consistent with the dicationic complex
formulation.

Addition of O2 to 1 at -80 °C in EtCN generates a dark green
species formulated as aµ-1,1-hydroperoxodicopper(II) complex,
[CuII

2(PD′O-)(-O2H)]2+ (2) (Scheme 1), with LMCT absorption
maxima at 407 (ε ) 2700 M-1 cm-1) and 488 (sh,ε ) 1600) and
a ligand field transition at 622 (ε ) 600) nm (Figure 2A). A
resonance Raman spectrum reveals an O-O stretching vibration
at 870 cm-1, which downshifts by 50 cm-1 with 18O-labeled O2

(Figure 2B). These data compare closely with structurally related
phenoxide- and hydroperoxide-bridged complexes [CuII

2(XYL-O-)-
(-O2H)]2+ (3) and [CuII2(UN-O-)(-O2H)]2+ (4) (νO-O ) 892 cm-1

(∆(18O2) ) -52 cm-1),9b-d as well as with data from two recently
reportedµ-hydroxo-µ-hydroperoxodicopper(II) species from Suzuki
and co-workers (νO-O ) 868 cm-1 (-45 cm-1) (X-ray structure
available) or 883 cm-1 (-50 cm-1)).4,10Thus, hydroperoxo complex
2 forms in a manner analogous to that known for3 and 4, via

oxygenation of the phenol-dicopper(I) complex [CuI
2(PD′OH)-

(MeCN)2]2+ (1) (Scheme 1).9b,c,11

The structures of these hydroperoxide-dicopper(II) complexes
are presumed to all be the same as Suzuki’s4 and an acylperoxo
complex with the XYL-O- (vide supra) ligand,9e with oneµ-oxygen
bridging ligand (hydroxide in Suzuki’s complexes or phenoxide in
the others) plus theµ-1,1-OOH donor (Scheme 1). The Cu‚‚‚Cu
distances for CuII2(µ-OR)(µ-OR′)12 complexes fall in the relatively
small range of 2.93 to 3.10 Å.4,9a-c However, within the PD′O-

ligand framework, copper(II) coordination to all three nitrogens of
the bis(2-pyridylmethylamine) chelate plus the phenolate oxygen
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Figure 1. [CuI
2(PD′OH)(MeCN)2]2+ (1) and representation of the X-ray

structure of the derivative, [CuI
2(PD′OH)(PPh3)2]2+; the PPh3 phenyl groups

are omitted for clarity. Cu-Npy ) 2.04 to 2.11 Å; Cu-P ) 2.17 and 2.19
Å; Cu‚‚‚O ) 3.09 to 3.23 Å; and Cu‚‚‚Cu ) 6.25 and 6.38 Å.8

Scheme 1
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atom should lead to a complex with a Cu‚‚‚Cu distance> 3.7 Å13,14

(also see the structure of5), far too long to maintain aµ-1,1-hydro-
peroxide coordination mode. Thus, we propose that [CuII

2(PD′O-)-
(-O2H)]2+ (2) possesses a coordination where the alkylamino N
atoms are not metal-bound, and solvent nitrile groups instead
coordinate (Scheme 1). Supporting this supposition are the follow-
ing: (i) The metal-metal distance in related binucleating ligand
frameworks can decrease dramatically through weakening or loss
of the bridgehead Nalkylaminocoordination.15 (ii) CuII-nitrile coordina-
tion is precedented in a complex closely related to2.9a (iii) Further,
formation of 2 occurs only in nitrile solvents, unlike other
systems,9a-c suggesting RCN involvement in the chemistry. Thus,
when1 reacts with O2, each Cu ion releases the weakly coordinated
Nalkylamino atom and the hydroperoxide formed (i.e.,2) is a nitrile
solvent coordinated (and stabilized) species (Scheme 1).

[CuII
2(PD′O-)(-O2H)]2+ (2) is stable at-80 °C in EtCN but

less so with PhCH2CN present. Warming to RT and workup leads
to the isolation of a blue crystalline solid (g15% yield);8,16an X-ray
analysis reveals it to be a cyanide-bridged tetranuclear copper(II)
complex, [{CuII

2(PD′O-)(CN-)}2](ClO4)4 (5) (Cu‚‚‚Cu) 3.91(intra)

and 5.02(inter) Å; νCtN ) 2160 cm-1) (Scheme 1). The source of
the CN- is the nitrile solvent, which has been attacked by the
hydroperoxo group in2. This conclusion is reached from the
following observations: (i) A 1:4 mixture of PhCH2CN/CH2Cl2
was employed as the solvent for the oxygenation of1 at -80 °C.
After warming to RT and workup, GC-MS analysis showed that
benzaldehyde was formed (18% yield, based on2; paralleling the
yield of 5).16,17 (ii) Furthermore, a reaction carried out using18O2

revealed a 60%18O incorporation into the PhC(O)H product.8

As a proposed mechanism for RCN oxidation (Scheme 1), we
suggest initial Cu2-OOHR-hydrogen atom abstraction from a EtCN-
or PhCH2CN-coordinated substrate (2 f a);18 under the experi-
mental conditions employed where2 is warmed with the substrate,
product analysis for a reaction run in C6H5CH2CN/C6D5CD2CN
(1:1) gives an apparent (based on aldehyde product yields)kH/kD

) 2.9 ( 0.2.8 Elimination of water and oxygen rebound would
lead to a coordinated (and deprotonated)R-hydroxynitrile (b). This
could de-ligate from copper (via protonation)4,17or directly eliminate
to give the aldehyde, leaving a cyanide complex (c), which dim-
erizes to the observed tetranuclear product5.

Villafranca et al. reported thatp-hydroxybenzylcyanide is a
suicide substrate for DâM. The enzyme hydroxylates 4-OH-
C6H4CH2CN, giving 4-hydroxymandelonitrile, which decays to
4-hydroxybenzaldehyde and cyanide.6 Our system closely mimics

this enzymatic reaction. As mentioned, Suzuki et al. have shown
their CuII

2-OOH species to effectintramolecular-coordinated ligand
Ar-CH2NR2 methylene hydroxylation and subsequent N-dealkyla-
tion.4 Although recent experiments and calculations suggest that a
Cu-superoxide may be the preferred active species in DâM and
PHM,2f-h both Suzuki’s4 and the present study argue that a
CuI

n/O2-derived CuII2-OOH moiety could initiate useful substrate
hydroxylation reactions in biological or chemical systems. Further
studies to delineate CuII-O2

- vs CuII-OOH reactivity are in progress.
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Figure 2. (A) UV-vis absorption of1 (black) and [CuII2(PD′O-)(-O2H)]2+

(2) (green) at-80 °C in EtCN. (B) rRaman spectrum of2 (ClO4
- as

counterion) with16O2 and18O2 isotopic substitution. The samples were run
at 77 K in MeCN with 407 nm excitation. Solvent peaks denoted by *.2
(B(C6F5)4

- as counterion) hasνO-O at 855 cm-1 (∆(18O2) ) ∼45-50
cm-1).8 No νCu-O stretch is observed above signal-to-noise in this
photosensitive compound.
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